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Abstract. The Greenland Ice Sheet (GrIS) mass loss has been accelerating at a rate of about 20 +/- 10 Gt/yr 2 since the end of

the 1990's, with around 60% of this mass loss directly attributed to enhanced surface meltwater runoff. However, in the

climate and glaciology communities, different approaches exist on how to model the different surface mass balance (SMB)

components using: (1) complex physically-based climate models which are computationally expensive;  (2) intermediate

complexity energy balance models; (3) simple and fast positive degree day models which base their inferences on statistical

principles  and are computationally highly efficient.  Additionally,  many of  these models compute the SMB components

based on different spatial and temporal resolutions, with different forcing fields as well as different ice sheet topographies

and extents, making inter-comparison difficult. In the GrIS SMB model intercomparison project (GrSMBMIP) we address

these issues by forcing each model with the same data (i.e., the ERA-Interim reanalysis) except for two global models for

which this forcing is limited to the oceanic conditions, and at the same time by interpolating all modelled results onto a

common ice sheet mask at 1 km horizontal resolution for the common period 1980-2012. The SMB outputs from 13 models

are  then  compared  over  the  GrIS to  (1)  SMB estimates  using a combination of  gravimetric  remote  sensing data from

GRACE and measured ice discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice

extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Our results reveal that the mean GrIS SMB of all

13 models has been positive between 1980 and 2012 with an average of 340 +/- 112 Gt/yr, but has decreased at an average

rate of -7.3 Gt/yr2 (with a significance of 96%), mainly driven by an increase of 8.0 Gt/yr2 (with a significance of 98%) in

meltwater runoff. Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting

the need for accurate representation of the GrIS ablation zone extent and processes driving the surface melt. In addition, a

higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where the model

spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation. Overall, polar regional climate

models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However,

other simpler and faster models have biases of same order than RCMs with observations and remain then useful tools for

long-term simulations. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of

the present day SMB relative to observations, suggesting that biases are not systematic among models.

1 Introduction

Mass loss from the Greenland Ice Sheet (GrIS) has been accelerating since the 1990s (Enderlin et al., 2014; Mouginot et al.,

2019; Hanna et al., 2019). Over the period 1991-2015, roughly 60% of the total mass loss can be ascribed to reduced GrIS

surface  mass  balance  (SMB;  see  Eq.  1)  (Van  den  Broeke,  2016),  which  refers  to  the  difference  between  the  total

precipitation (rain and snow, P), runoff (RU), sublimation/evaporation (SU), snow erosion by the wind (ER) and glacier

storage (GS). Since drifting snow erosion contributes ~1 Gt/yr to SMB, ER is however neglected in most models, although it

can be important locally (Lenaerts et al., 2012). 
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SMB = P – RU – SU – ER  (1)

When SMB is integrated over the whole ice sheet, the mass changes coming from the water glacial storage (lakes, melt pond,

channels,…) could be relevant but has never been evaluated until now. 

The recent GrIS SMB variability has been mainly driven by an increase in surface melt and subsequent meltwater runoff

(Van den Broeke et al., 2016, Fettweis et al., 2017, Lenaerts et al., 2019, IPCC, 2019), caused by Arctic amplification and a

state change in the North Atlantic Oscillation and increased Greenland Blocking (GBI) in summer (Fettweis et al., 2013b;

Delhasse et al., 2018; Hanna et al., 2018) which raises the average temperature (Screen and Simmonds, 2010), reduces the

cloudiness (Hofer et al., 2017) and enhances the melt-albedo feedback (Box et al. 2012; Ryan et al., 2019; Noël et al., 2019).

Additionally, SMB-related processes are also one of the main uncertainties in future projections of the GrIS contribution to

sea level rise as the ice sheet retreats in a warmer climate (Goelzer et al., 2013; van den Broeke et al., 2017; Hofer et al.,

2019).

Until now, only a few attempts to compare currently available models in terms of their ability to simulate the present day

GrIS SMB have been made (e.g. Vernon et al., 2013). These previous studies i) evaluated SMB within a subset of regional

climate models (RCMs) (Rae et al., 2012), ii) compared positive degree day (PDD) models with energy balance snowpack

models (van de Wall, 1996; Bougamont et al., 2007) or iii) assessed the representation of specific physical sub-processes

(Reijmer et al., 2012). Since these models implement different physical and statistical processes, run on different grids, use

different forcing data and/or cover various temporal ranges, previous model comparison studies have suffered from limited

inter-comparability.

In this study we compare the SMB outputs of 13 state-of-the-art climate models (physical and statistical) over (1) a common

time period (1980-2012), (2) using the same model grid with a 1-km horizontal resolution, and (3) over the sale ice-sheet

mask of the contemporary GrIS extent. Moreover, almost all of the 13 models are forced with ERA-Interim reanalysis (Dee

et al., 2011), although the data are prescribed in a slightly different manner between the models. For PDD models and energy

balance models EBMs deriving melt from near-surface temperature and energy fluxes, the models are forced by the ERA-

Interim based near-surface climate extrapolated to the model’s spatial resolution. In Regional Climate Models (RCMs) the

reanalysis  dataset  is  prescribed  at  the ocean  surface and at  the lateral  boundaries  of  their  integration domain,  while in

General Circulation Models (GCMs) these forcing data are either not used or, in the case of atmosphere-only simulations, are

only used to prescribe the oceanic surface conditions.

Sections 2 and 3 describe the 13 models used in the intercomparison (5 RCMs, 4 EBMs, 2 PDDs, and 2 GCMs) and the

observational data sets used for evaluation. Results are presented in Section 4 and discussed in Section 5. Conclusions are
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drawn in Section 6. Note that this intercomparison exercise does not aim at formally ranking model performance. Here we

identify  regions  with  low  measurement  density  and  large  model  discrepancies  to  provide  some  insight  on  regional

uncertainty.

2. Model

2.1 Description

2.1.1 BESSI (EBM – 10km)

BESSI is a surface energy and mass balance model designed for simulating long time scales (Born et al., 2019; Zolles et al.,

2019). It is forced with ERA-interim reanalysis fields of temperature, humidity, long-wave and short-wave radiation, and

precipitation (Dee et al., 2011). The temperature is the only variable that is downscaled to the actual model topography

(ETOPO1, Amante and Eakins, 2009) using a lapse rate of 0.0065 K/m. Contrary to previously published model versions,

here we use incoming long-wave radiation as a forcing field rather than a temperature based parameterisation. Energy fluxes

are calculated with a time step of one day on a 10x10 km grid.

The model uses an albedo scheme based on a linear relationship between temperature and a time decay rate (Aoki et al.,

2003). This decay is enhanced in the presence of liquid water in the surface layer. The latent and sensible turbulent heat

fluxes are calculated based on the residual method (Rolstad and Oerlemans, 2005; Braithwaite, 2009) with constant wind

speed over the entire ice sheet.  Refreezing and percolation is instantaneous in every time step, with a maximum water

holding capacity of 10% of the free pore volume (Greuell, 1992). Finally, the model parameters were optimised to fit the

GRACE mass balance data over the 2002-2018 period (Born et al., 2019).

2.1.2 BOX13 (calibrated RCM – 5km)

The basis of the BOX13 surface mass balance reconstruction are linear regression parameters that describe relationships

between spatially discontinuous in-situ records from meteorological stations (i.e. monthly temperature after Vinther et al.

(2006);  Cappelen et  al. (2001, 2006, 2011) or firn/ice cores  and spatially continuous RACMO2.1 (Ettema et al.,  2010)

regional climate model output. Explanatory (independent variable) data (air temperature and firn/ice core data) span 1840 to

2012. A 43-year overlap period 1960-2012 with RACMO2.1 is used to determine regression parameters on a grid cell basis.

A fundamental assumption is that the calibration factors; regression slope and offset for the calibration period 1960-2012; is

stationary in time. 

The RACMO2.1 data are resampled and reprojected from a 0.1 deg (~10 km) grid to a 5 km grid. See Box et al. (2013) 'part

I' for a description of the method, that includes a formal approach to estimate uncertainty. The following refinements are

however made from the SMB reconstruction of Box et al. (2013) and Box (2013). The estimation of values is made for a
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domain that includes not only ice but land and sea. The physically-based meltwater retention scheme of Pfeffer et al. (1991)

replaced the simpler approach used by Box (2013). Multiple station records contribute to the near surface air temperature for

each given year, month and grid cell in the domain while in Box (2013), only data from the single highest correlating station

yielded the reconstructed value. This revised surface mass balance data ends with year 2012 while Box (2013) ends in 2010.

Finally, the annual accumulation rates from ice cores are dispersed into a monthly temporal resolution by weighting the

monthly (based on the 1960-2012 RACMO2.1 data)  fraction of the annual  total  for each grid cell  in the domain. The

accumulation reconstruction has been evaluated by Lewis et al. (2017, 2019).

2.1.3 CESM2 (GCM – 1km)

In this study, the CESM version 2.0 (CESM2) is used in a configuration with fixed ocean state. In particular, the protocol for

the Atmospheric Model Intercomparison Project (AMIP, Gates et al., 1999) is used, with prescribed sea-surface temperatures

and  sea  ice  cover  from  Hurrell  et  al.  (2008)  for  the  period  1979-2014.  Global  land  cover  usage  is  prescribed.  The

atmospheric component is the Community Atmosphere Model version 6 (CAM6) and the land surface component is the

Community Land Model  version 5 (CLM5),  both operating at  a  nominal resolution of  1 degree.  No ice dynamics are

considered, i.e. the geometry of the GrIS is static in time. Initial conditions for CAM6 and CLM5 snow pack are taken from

a fully coupled CESM2 simulation. Subgrid topographic variability is partially accounted for by the use of multiple elevation

classes (ECs) in CLM5, with up to 10 ECs per grid cell. Atmospheric forcing is downscaled to each EC, with lapse rates

used for temperature and downwelling longwave radiation, and phase recomputation for precipitation (for details: see Van

Kampenhout et al., 2019). Output indexed by EC is used for downscaling CESM2 SMB to the 1 km ISMIP6 grid (Nowiki et

al., 2016) using linear interpolation in the vertical and bilinear interpolation in the horizontal direction as described in Van

Kampenhout et al. (2019).

2.1.4 dEBM (EBM – 1km)

The diurnal Energy Balance Model (dEBM) is a surface mass balance scheme that incorporates both radiative and turbulent

heat fluxes, and captures diurnal variability in the melt-freeze cycles (Krebs-Kanzow et al., 2018) and monthly variations in

cloud cover.  As forcing,  dEBM only requires  monthly means  of  short  wave radiation  at  the  surface,  near  surface  air

temperature and precipitation. Monthly mean duration and intensity of the diurnal melting and refreezing periods are derived

from the monthly mean surface radiation and from the diurnal cycle of the top of atmosphere (TOA) short wave radiation.

The latter is implicitly represented as a function of latitude and month based on prescribed parameters of the Earth's orbit

around the Sun. Monthly mean atmospheric transmissivity and cloud cover are estimated from the ratio between monthly

mean shortwave radiation at the surface and at the TOA (from forcing fields and from orbital parameters, respectively). The

scheme  has  a  monthly  time  step  and  distinguishes  albedo  of  bare  ice,  and  wet,  dry  and  new  snow  on  the  basis  of

precipitation,  surface  energy  balance  and  the  previous  month’s  snow type  and  snow height.  Additionally,  the  scheme

includes a residual heat flux R which is thought to represent those energy fluxes which are not included in the scheme, such
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as the heat flux to the subsurface or latent heat fluxes at the surface. Here, R has been treated as a tuning parameter and has

been optimized to R = -5W m-2 with respect to the surface mass balance measurements from Machguth et al. (2016) over the

ERA-Interim period (1979-2016). To force the model, monthly mean ERA-Interim precipitation, surface insolation and near

surface air temperatures have been interpolated to the 1 km ISMIP6 grid and temperature fields have been additionally

downscaled applying a lapse rate correction of  = -0.007K/m.𝞒

2.1.4 HIRHAM (RCM – 5.5km)

The HIRHAM regional climate model has been developed to include a full surface energy and mass balance model using an

original  code  developed from physical  schemes  used in  the  ECHAM5 global  model  and dynamical  schemes  from the

HIRLAM numerical weather prediction model. It has 31 vertical levels and is forced on 6 hourly intervals on the lateral

boundaries. The RCM has a simple five layer snowpack model to a depth of 10m over glacier surfaces, incorporating the

same parameterisations used in an offline version that  has 32 layers.  The offline version assimilates MODIS MOD10A

albedo data to get a closer fit between modelled and observed albedos. Langen et al. (2017) describe the snowpack model in

detail and show that the inclusion of MODIS data significantly improves the modelled SMB. 

2.1.6 IMAU-ITM (EBM – 5km)

IMAU-ITM is an insolation- and temperature-based SMB model. This simplified EBM is used in the ANICE ice-sheet

model for paleoclimate simulations (de Boer et al., 2014; Berends et al., 2018). Monthly precipitation from the ERA-Interim

reanalysis is downscaled to actual model topography (in this case, the BedMachine v3 dataset; Morlighem et al., 2017) using

the  wind-orography-based  parameterisation  by  Roe  and  Lindzen  (2001)  and  Roe  (2002).  The  resulting  downscaled

precipitation is partitioned into rain and snow based on the temperature parameterisation by Ohmura (1999). The depth of

the accumulated snow layer is tracked, with a maximum value of 10 m; any additional firn is assumed to be compressed into

ice. The surface albedo is calculated as a weighted average of the albedos of fresh snow and bare ice, based on the thickness

of the snow layer and the amount of melt that occurred during the previous year. Melt is determined using the insolation-

temperature  parameterisation  by  Bintanja  et  al.  (2002),  which  uses  prescribed  values  for  insolation  at  the  top  of  the

atmosphere, and which was developed especially for palaeoglaciological applications. Refreezing is calculated following the

approach by Huybrechts and de Wolde (1999) and Janssens and Huybrechts (2000), based on the available liquid water (the

sum of rain and melt) and the refreezing potential, integrated over the entire year to account for the retention of summer melt

which is refrozen in winter. For this study, the parameters in the refreezing and snowmelt parameterisations were calibrated

to obtain the closest match (i.e. highest value of linear correlation coefficient divided by RMSE) to the RACMO2.3 values

over the 1979-2017 period on the 1 km grid.
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2.1.7 MAR (RCM - 15km)

The version 3.9.6 from MAR is used here by using a resolution of 15 km. MAR was forced at its lateral boundaries by ERA-

Interim at  a 6-hourly time step. The boundary forcing files  include information about the temperature,  u- and v- wind

components, specific humidity and sea level pressure as well as the sea surface temperature (SST) and sea ice cover over

ocean. It is the same model configuration which is used in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6)

for future projections over the GrIS (Nowiki et al., 2016). With respect to the version 3.5.2 of MAR used in Fettweis et al.

(2017) and Hofer et al. (2017), the main improvements are: (1) An increase of the cloud lifetime with the aim of correcting

the  biases  of  solar  and  infrared  radiation  highlighted  in  Fettweis  et  al.  (2017),  (2)  adjustments  in  the  bare  ice  albedo

representation for a better comparison with in situ measurements, (3) a larger independence of model results to the used time

step and (4) a better dynamical  stability with an increased spatial filtering for a computing time divided by a factor  2

compared  to  version  3.5.2.  Additionally,  we  also  dealt  with  minor  bug  corrections  and  small  updates  for  enhanced

computing efficiency and comparison with in-situ automatic weather data (Delhasse et al., 2019). 

2.1.8 MPI-ESM (GCM - 1km)

The  historical  simulation  underlying  the  SMB calculations  by  Max Planck  Institute  (MPI)  is  simulated  with  a  higher

resolution version of the latest version of the MPI Earth System Model (MPI-ESM1.2-HR). In this version the atmospheric

model ECHAM6.3, with a spectral resolution of T127 (~100 km), is coupled to the ocean model MPIOM version 1.6.2, with

a nominal 0.4° resolution and a tripolar grid. A thorough description of this model setup can be found in Müller et al. (2018).

An EBM approach is used to calculate the SMB from one ensemble member of the historical MPI-ESM1.2-HR simulations

and downscale it from ~100km to the 1km ISMIP6 topography. The offline EBM scheme is similar to the one presented in

Vizcaíno et al. (2010); despite technical changes and the introduction of elevation classes mainly the albedo parameterisation

was  updated.  The EBM calculates  melt  and accumulation  rates  from hourly atmospheric  fields  of  the  historical  MPI-

ESM1.2-HR simulation on its native grid. The atmospheric fields are bi-linearly interpolated onto 24 fixed elevation classes,

ranging from 0 m to 8000 m. To account for height differences between each elevation class and the surface elevation of the

atmospheric  model  a  height  correction  is  applied  to  near-surface  air  temperature,  humidity,  dew  point  temperature,

precipitation,  downward longwave radiation and near-surface  density fields.  The downward  shortwave radiation is kept

constant,  as  it  is  largely  affected  by  atmospheric  properties  that  are  independent  of  elevation  differences  (e.g.  ozone

concentration, aerosol thickness) (Yang et al., 2006). To obtain melt rates, the EBM computes the energy balance at the

atmosphere-snow interface as sum over the radiative and turbulent as well as rain induced and conductive heat fluxes. The

albedo parameterisation used here is based on the parameterisation by Oerlemans and Knap (1998) and considers snow

aging, snow depth, and the influence of cloud coverage. The obtained 3-D fields of surface melt, accumulation and SMB are

then vertically and horizontally interpolated onto the 1km ISMIP6 topography used as reference topography in this study. 
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2.1.9 NHM-SMAP (RCM – 5km)

The latest version of the polar RCM NHM-SMAP, with a horizontal resolution of 5 km, developed by Niwano et al. (2018)

was used in this study. The same version was recently utilised to assess cloud radiative effects on the Greenland ice sheet

surface  melt  (Niwano  et  al.,  2019).  The  atmospheric  part  of  NHM-SMAP is  the  Japan  Meteorological  Agency  Non-

Hydrostatic  atmospheric  Model  (JMA-NHM) developed  by  Saito et  al.  (2006),  which  employs flux  form equations  in

spherical  curvilinear  orthogonal  coordinates  as  the  governing  basic  equations.  We  pay  close  attention  to  the  cloud

microphysics processes, therefore, the version of JMA-NHM utilised for NHM-SMAP (Hashimoto et al., 2017) employs a

double-moment  bulk  cloud  microphysics  scheme  to  predict  both  the  mixing  ratio  and  the  concentration  of  solid

hydrometeors (cloud ice, snow, and graupel), and a single-moment scheme to predict the mixing ratio of liquid hydrometeors

(cloud water and rain). For the simulation of snow and ice physical conditions, the multilayered physical snowpack model

SMAP is utilised (Niwano et al., 2012, 2014). The SMAP model calculates snow albedo using the detailed physically based

snow albedo model developed by Aoki et al. (2011) considering the effects of snow grain size evolution explicitly. Although

the model can also consider the effects of light-absorbing impurities on snow albedo, we assumed the pure snow condition

here. On the other hand, bare ice albedo is calculated by using a simple parameterisation as a function of density. To estimate

realistic runoff from the ice sheet, a detailed vertical water movement scheme based on the Richards equation (Yamaguchi et

al., 2012) is used. To force NHM-SMAP (dynamical downscaling), we used not the ERA-Interim reanalysis but the JRA-55

reanalysis (Kobayashi et al., 2015) due to the lack of enough computational resources. However, it should be noted that the

quality of the arctic atmospheric physical conditions from both reanalysis data during the study period were almost the same

level as reported by Simmons and Poli (2015) and Fettweis et al. (2017) who showed not significant difference between

MAR forced by ERA-Interim and JRA-55.

2.1.10 PDD5km (PDD - 5km)

European  Centre  for  Medium-Range  Weather  Forecasts  (ECMWF)  ERA-Interim  (Dee  et  al.,  2011)  2-m  surface  air

temperature, precipitation and surface latent heat flux reanalysis data were downscaled from their native 0.75° resolution to

5x5-km using bilinear interpolation, a high-resolution DEM (Ekholm, 1996) and empirically-derived ice-sheet surface lapse

rates to correct surface air temperature, as described in full in Hanna et al. (2005, 2011). Downscaled surface air temperature

was validated using independent in-situ observational automatic weather station data from the Greenland Climate Network

(Steffen and Box, 2001), showing very good agreement between downscaled/modelled and observed temperatures. Net solid

precipitation (snowfall minus evaporation and sublimation) was spatially calibrated against the Bales et al. (2009) krigged

map of snow accumulation based on ice-core and coastal precipitation gauges. Evaporation and sublimation were calculated

from surface latent heat flux. The resulting downscaled Greenland climate gridded data were used to drive a runoff/retention

model  (Janssens  and  Huybrechts,  2000)  that  produced  surface  melt,  runoff,  evaporation  and  SMB at  a  monthly  time

resolution, while net precipitation was taken from the ERA-I dataset downscaled, calibrated and adjusted as above. Ice-sheet
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averaged annual SMB since 1958 was shown to correlate strongly between this method and RACMO2.1 but significant

differences  in absolute values between the respective methods were considered to be mainly due to poorly-constrained

modelled accumulation (Hanna et al., 2011).

2.1.11 PDD1km (PDD - 1km)

This modelling method is essentially the same as described in 2.1.10. However, here a higher-resolution DEM (Bamber et

al., 2013) was used to downscale ERA-Interim reanalysis data to 1x1 km2 resolution, producing monthly output for 1979-

2012 (Wilton et al. ,2017). In addition, variable “sigma” - standard deviation of 6-hourly temperatures, computed for each

month- was incorporated into the PDD method, based on earlier work by Jowett et al. (2015). The resulting high-resolution

PDD  model  output  was  evaluated  using  PROMICE  observations  (Machguth  et  al.,  2016),  showing  generally  robust

correlations (Wilton et al., 2017) which were broadly comparable, though not quite as good, as the polar RCMs. Finally, this

method is particularly useful for long centennial/pre-satellite timescales for which relatively few reliable meteorological

fields are available (Wilton et al., 2017).

2.1.12 RACMO2.3 (RCM - 1km)

The polar (p) version of the Regional Atmospheric Climate Model (RACMO2.3p2) is run at 5.5 km horizontal resolution for

the period 1958-2018 (Noël et al., 2018). The model incorporates the dynamical core of the High-Resolution Limited Area

Model (HIRLAM; Undèn et al., 2002) and the physics from the European Centre for Medium-range Weather Forecasts-

Integrated Forecast System (ECMWF-IFS cycle CY33r1; ECMWF-IFS, 2008). RACMO2.3p2 includes a multi-layer snow

module that simulates melt, water percolation and retention in snow, refreezing and runoff (Ettema et al., 2010). The model

also accounts for dry snow densification (Ligtenberg et al., 2018), and drifting snow erosion and sublimation (Lenaerts et al.,

2012).  Snow albedo  is  calculated  based  on  snow grain  size,  cloud  optical  thickness,  solar  zenith  angle  and  impurity

concentration in snow (Van Angelen et al., 2012). Bare ice albedo is prescribed from the 500 m MODIS 16-day Albedo

product (MCD43A3), as the 5% lowest surface albedo records for the period 2000-2015, minimized at 0.30 for dark bare ice

and maximized at 0.55 for bright ice under perennial firn. Glacier outlines and surface topography are prescribed from a

down-sampled version of the 90 m Greenland Ice Mapping Project (GIMP) Digital Elevation Model (DEM) (Howat et al.,

2014). RACMO2.3p2 is forced at its lateral boundaries by ERA-40 (1958-1978) (Uppala et al., 2005) and ERA-Interim

(1979-2018) (Dee et al.,  2011) re-analyses on a 6-hourly basis within a 24 grid cells wide relaxation zone. The forcing

consists of temperature, specific humidity, pressure, wind speed and direction being prescribed at each of the 40 vertical

atmosphere model levels. Upper atmosphere relaxation (nudging) is also implemented in RACMO2.3p2 (Van de Berg and

Medley, 2016). The model has 40 active snow layers that are initialized in September 1957 using temperature and density

profiles  derived  from  the  offline  IMAU  Firn  Densification  Model  (IMAU-FDM)  (Ligtenberg  et  al.,  2018).  Detailed

description of the model and recent updates are discussed in Noël et al. (2018).

9/35

265

270

275

280

285

290

https://doi.org/10.5194/tc-2019-321
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



The 5.5 km product is further statistically downscaled onto a 1 km grid to resolve the steep SMB gradients over narrow

glaciers and confined ablation zones at the rugged ice sheet margins. Statistical downscaling corrects runoff for biases in

elevation and bare ice albedo using a down-sampled version of the GIMP DEM (topography and ice mask) and a MODIS

albedo product at 1 km resolution. This allows to accurately represent the high runoff rates observed at the GrIS margins,

significantly  improving  the  agreement  with  SMB  measurements.  Detailed  description  of  the  statistical  downscaling

procedure is discussed in Noël et al. (2016).

2.1.13 SnowModel (EBM - 5km)

SnowModel was forced with ERA-Interim (ERA-I) reanalysis products on a 0.75° longitude × 0.75° latitude grid from the

European Centre for Medium-Range Weather Forecasts (ECMWF; Dee et al. 2011), where the 6-hour (precipitation at 12-

hour) temporal resolution ERA-I data were downscaled to 3-hourly values and a 5-km grid. SnowModel (Liston and Elder,

2006a)  contains  six  sub-models,  where  five  of  the  models  were  used  here  to  quantify  spatiotemporal  variations  in

atmospheric forcing, GrIS surface snow properties (including refreezing and retention), sublimation, evaporation, runoff, and

SMB.  The  sub-model  MicroMet  (Liston  and  Elder,  2006b;  Mernild  et  al.,  2006)  downscaled  and  distributed  the

spatiotemporal atmospheric fields using the Barnes objective interpolation scheme, where the interpolated fields were also

adjusted using known meteorological  algorithms, e.g., temperature-elevation, wind-topography, humidity-cloudiness, and

radiation-cloud-topography relationships (Liston and Elder, 2006b). Enbal (Liston, 1995; Liston et al., 1999) simulated a full

surface energy balance considering the influence of cloud cover, sun angle, topographic slope, and aspect on incoming solar

radiation, and moisture exchanges, e.g., multilayer heat- and mass-transfer processes within the snow (Liston and Mernild,

2012). SnowTran-3D (Liston and Sturm, 1998, 2002; Liston et al., 2007) accounted for the snow (re)distribution by wind.

SnowPack-ML (Liston and Mernild, 2012) simulated multilayer snow depths, temperatures, and water-equivalent evolutions.

HydroFlow (Liston  and  Mernild,  2012)  simulated  watershed  divides,  routing  network,  flow residence-time,  and  runoff

routing (configurations based on the hypothetical gridded topography and ocean-mask datasets), and discharge hydrographs

for each grid cell including from catchment outlets. These sub-models have been tested against independent observations

with success in Greenland, Arctic, high mountain regions, and on the Antarctic Ice Sheet with acceptable results (e.g., Liston

and Hiemstra, 2011; Mernild and Liston, 2012; Mernild et al., 2015; Beamer et al., 2016).

2.2 Interpolation on a common grid

One of the key issues raised by the first SMB model intercomparison performed by Vernon et  al. (2013) was the high

dependency of modelled integrated SMB values to the used ice sheet mask. To mitigate this problem, we extrapolated all

model outputs to the same 1-km grid used in the Ice Sheet Model Intercomparison Project  for CMIP6 (ISMIP6).  This

resolution was chosen because the highest resolution model outputs (e.g. RACMO2.3p2) are available at 1  km and choosing

a coarser resolution could compromise their quality. A common grid also allowed comparison on two common ice sheet

masks: the contiguous Greenland ice sheet, which is common to all the models and the Greenland ice sheet plus peripheral
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ice caps and mountain glaciers, common to all the models except the two PDD models. Unless otherwise indicated, the SMB

components have been interpolated to 1 km using a simple linear interpolation metric of the four nearest inverse-distance-

weighted model grid cells. Moreover, as done in Le Clech't et al. (2019), the interpolated 1km SMB and runoff fields have

been corrected for elevation differences between the model native topography and the GIMP 250 m topography (interpolated

to 1 km here), using a time and space varying SMB-elevation gradients, as described in Franco et al. (2012) and in Noël et

al. (2016). No correction was applied to precipitation after interpolation to 1km. Finally, the ensemble mean is based on the

average of the 13 modelled monthly outputs interpolated on the 1km grid.

3. Observational data

3.1. Ice core and SMB measurements.

Similar to Fettweis et al. (2017), we compare modelled SMB with in-situ observations from:

(1) ice core measurements in the accumulation zone (Bales et al., 2001, 2009; Ohmura et al., 1999). The model outputs are

averaged over the overlapping measurements period. We use the annual mean over 1980-2012 when the measurements

period  is  not  specified  or  outside  the  period  1980-2012.  This  allows to  extend  a bit  the amount  of  available  ice  core

measurements for model evaluation without changing in deep the statistics. The modelled SMB values are compared to ice

cores by interpolating the four nearest inverse-distance-weighted grid cells to the common 1-km ISMIP6 grid.

(2)  the  SMB  database  (Machguth  et  al.,  2016)  compiled  under  the  auspice  of  PROMICE  and  available  through  the

PROMICE web portal  (http://www.promice.dk).  This dataset  mainly covers  the ablation zone of the GrIS and includes

measurements over some peripheral ice caps (as shown in Fig 1). Measurements not included in 1980-2012 period, records

shorter than 3 months or located outside the common 1 km ice mask are discarded from the comparison. In a similar fashion

as in Wilton et al. (2017), monthly model outputs are weighted by the length of the observed month, e.g. if the record starts

in the middle of a month. Daily outputs, available for some models, are not used here. As for the ice cores, outputs are

interpolated using the four nearest inverse-distance-weighted grid cells onto the ISMIP6 ice mask.

(3)  the  unpublished  database  of  snow pits  (Jason  Box,  personal  communication)  incorporating  observations  of  winter

accumulation  over  previously exposed  bare  ice  or  firn.  Snow pits  were  monitored  at  the  end  of  the  following winter

accumulation period (usually in May). As only the date when the snow pits were dug is known (May), we assume, for the

comparison with the models, that each record has started on the 1st of September. However, for some years and locations,

the winter accumulation may have started slightly later in October or November, after some late-season melt events. That is

why, we have accumulated modelled SMB values from September to May when the monthly modelled SMB is positive.
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3.2. GRACE estimation

The GRACE-based product, coupled with an estimate of monthly ice discharge from all (n > 200) large outlet glaciers (King

et al., 2018), is used here to evaluate the trend of the 2003-2012 modelled SMB. These quantities are integrated over the 6

basins defined in King et al. (2018) and based on basin configurations from Sasgen et al. (2012). The correction for glacial

isostatic adjustment is based on the model of Khan et al., 2016. Monthly glacier discharge estimates are combined with

RACMO2.3p2 SMB, and compared the resulting mass balance estimate to the GRACE product. It is important to note that

these  discharge/GRACE  products  from  King  et  al.  (2018)  were  derived  independently  from  RACMO3.2p2,  and  can

therefore be used to evaluate the trends in SMB products. 

3.3. Bare ice extent

The MODIS-based bare ice monthly product was used to evaluate the mean extent of the ablation zone (i.e. where the mean

annual SMB is negative) simulated by the models over 2000-2012 (Ryan et al., 2019). The daily classified bare ice maps

were used to calculate a summer (June, July, and August) bare ice presence index (or exposure frequency). The bare ice

presence index varies between 0 and 1 in any given summer and is defined as the number of times a pixel is classified as

bare ice divided by the total number of valid observations of that pixel (i.e., when not cloud obscured) between June 1 and

August 31. Finally, a 1x1 km² pixel was considered within the ablation zone if it was detected as bare ice in at least 50% of

the summers in 2000-2012. 

4. Evaluation of models

4.1 Comparison with in-situ SMB measurements

In comparison with SMB derived from ice cores (location shown in Fig. 1), both PDD models perform the best (See Table

1). However, the same ice core dataset has been used to correct ERA-interim precipitation that is used to force both these

models,  therefore  they  are  not  completely  independent.  Furthermore,  the  RCMs MAR,  NHM-SMAP and  RACMO2.3

generally agree better with observations than the other models that use ERA-Interim precipitation as forcing or GCM-based

precipitation computed at lower spatial resolution. Except for the two PDD models, the RMSE of the models is generally

higher than the standard deviation of the ice core measurements.

All the models show a worse agreement with the 130 snow pits than with the ice cores measurements (Table 1). However a

large part of these discrepancies can likely be ascribed to the use of monthly outputs knowing that the starting date of the

snow pit records (,i.e. when the winter accumulation actually started) is uncertain. With respect to the PROMICE SMB data

set, the model RMSE varies between 0.48 mWE (for MAR) and 0.89 mWE (for BESSI) over the main ice sheet. For most of

the models, the RMSE is close to the temporal standard deviation (0.92 mWE) of the PROMICE data set, suggesting that the
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modelled biases are not statistically significant. Finally, it is interesting to note that the best statistics are performed with the

ensemble mean of the 13 models (see Fig. S1 in supplementary), which will be used hereafter as the SMB reference field.

This suggests also that biases of each model are of different signs and are compensated when the 13 models based estimates

are averaged. 

All models, except HIRHAM, underestimate accumulation above 0.5 mWE but underestimate ablation rates when they are

greater  than 3 mWE, except RACMO2.3 and the two PDD models. Between 0 and 2 mWE, most of the models rather

overestimate ablation (Fig. 1). Finally, BESSI, BOX13 and NHM-SMAP systematically underestimate the ablation rates

over the whole range of observations, explaining their unfavourable statistics in Tab. 1 relative to other models. 

In brief, it is interesting to note that all types of model generally show similar performance (see Fig. S1 in supplementary).

Computationally  expensive  models  (i.e.  the  RCMs)  give the best  agreement  with observations:  MAR and RACMO2.3

perform well on average compared to SMB observations GrIS-wide, while NHM-SMAP (resp. HIRHAM) performs better at

representing SMB in the accumulation zone (resp. in the ablation zone). However, the evaluation statistics from the more

simple models (PDDs and EBMs) and from GCMs are generally  similar to the ones of polar RCMs. It  is nevertheless

important to note that RCMs are often used to calibrate these models, partly explaining their general good performance.

4.2 Comparison with GRACE measurements

To enable comparison with GRACE mass change, we estimate total mass balance (MB) for each model in 6 basins (Fig. 3)

by subtracting observed ice discharge (King et al.,  2018) from modelled SMB for the 13 models. Over Basin 1 and 2,

IMAU-ITM and SnowModel (resp. CESM2 and MPI-ESM) overestimate (resp. underestimate)  GRACE mass loss over

2003-2012. Over Basin 3, all the models underestimate the mass change. Additionally, some of the models (in particular

MAR) do not simulate mass variations in Basin 3, despite GRACE data suggesting a mass loss of 450 Gt over 2003-2012. In

south Greenland (Basin 4), the two PDD models show the most favourable statistics but all the models (except MPI-ESM)

underestimate mass loss. Along the west coast (Basin 5 and Basin 6), MAR and RACMO2.3 are most closely aligned with

the observations, while SnowModel systematically overestimates, and NHM-SMAP systematically underestimates the mass

loss. For the other models, the bias in Basin 5 and 6 varies in sign. Finally, an EBM (dEBM), a GCM (MPI-ESM), a PDD

(PDD1km) and two RCMs (MAR and RACMO2.3) compare the closest to the GRACE based GrIS-integrated mass loss

over 2003-2012. These favourable statistics are due to error compensation as none of the models matches well the GRACE-

derived regional mass loss integrated over individual basins. However, we need to mention that all of our modelled total

mass balance estimations use the same discharge estimates from King et al. (2018) and do not take into account changes in

mass over tundra, over small ice caps (not included in the common ice sheet mask) and in glacial storages (e.g. meltwater

lakes, water tables,...): this partly explains why the discrepancies between models and GRACE could be locally very high.
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Additionally, the statistics listed in Table 2 are useful for evaluating the seasonal variability once the linear trend in both

time series has been removed. In comparison to GRACE we find that the five RCMs simulate the seasonal cycle of SMB

much  better  than  other  types  of  models  (see  Fig.  S2  in  supplementary),  although  the  trend  (Fig.  3)  is  significantly

underestimated in e.g. HIRHAM and NHM-SMAP. The two GCMs have the larger RMSE mainly because their interannual

variability is not (fully) forced by ERA-Interim. Finally, it is interesting to note that, for most of the models, the sign of the

bias with the PROMICE data set (see Table 1) is highly correlated to the sign of the trend bias with respect to the GRACE

based  product.  For  example,  the  2003-2012  changes  in  SMB were  driven  by  an  increase  of  melt,  and  those  models

underestimating surface ablation also underestimate these recent changes (the signal coming from discharge change is the

same for all the models). Finally, for a total surface mass loss over 2003-2012 of ~ 3000 Gt as suggested by the GRACE data

set, the models range from -1066 Gt to -6034 Gt with an ensemble mean of -2611 +/- 1253 Gt suggesting a large discrepancy

between models and therefore a large uncertainty in the modelled SMB trends.

4.3 Comparison with bare ice extent

We can reasonably assume that the mean SMB should be negative in the bare ice area and positive above the snow line.

However, the equilibrium line altitude varies each year. Therefore, we have chosen to only use SMB values that fall within 0

mmWE/yr plus (resp. minus) half the SMB interannual variability (/2) to detect the modelled accumulation (resp. ablation)

zone. Except BESSI, all models are able to develop a large enough bare ice area, although most of them overestimate the

ablation zone extent, in particular IMAU-ITM and SnowModel (see Table 3). In Fig. 2, the hatched areas outline the regions

where the models overestimate or underestimate (only for BESSI) the bare ice area. We can see that BESSI fails to represent

the extent of the south-western ablation zone. Conversely, IMAU-ITM, BOX13, PDD5km and SnowModel overestimate the

extent of the ablation area in north-east Greenland, where the SMB from the other models is also very low but remains

positive. Finally, it is interesting to note that both GCMs (CESM2 and MPI-ESM), despite their coarse native resolution in

the atmosphere, are able to accurately model the snow line, which is attributed to their subgrid downscaling module.

5. Discussion and comparison

Integrated over the common main ice sheet mask (see Table 4), the average total GrIS SMB over 1980-2012 ranges from 96

Gt/yr (SnowModel) to 429 Gt/yr (NHM-SMAP), with a mean value of 340 +/- 112 Gt/yr. Comparing the two largest SMB

components (i.e. snowfall and runoff), we show large discrepancies between models. For some models, SMB falls within the

range of the other models only due to compensating effects of over or underestimating both snowfall and runoff (see Fig. S3

in supplementary). For example, the snowfall and runoff from BESSI and the PDD models are very low compared to other

models but yield similar integrated SMB. In addition, the SMB of NHM-SMAP (resp. SnowModel) is substantially higher

(resp. lower) than that of other models, due to an overestimation in snowfall accumulation (resp. meltwater runoff). Finally,
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except for SnowModel (which suggests an SMB trend close -12.9 Gt/yr²), all models suggest that the SMB of the GrIS has

decreased at a rate of ~7 Gt/yr² over the period 1980-2012, primarily due to an increase of meltwater runoff (~ +8 Gt/yr²). 

If we compare each model to the ensemble mean (Fig. 4), we can see that BESSI, NHM-SMAP and PDD1km generally

simulate lower runoff in the ablation zone with respect to the other models (Fig. 5). In contrast SnowModel, HIRHAM and

BOX13 simulate rather larger runoff than the ensemble mean. These differences mainly explain the SMB anomaly in the

ablation zone shown in Fig 4 with respect to the ensemble mean. IMAU-ITM, BESSI and SnowModel are too dry in the

interior of the ice sheet, even though they use identical ERA-Interim precipitation forcing as the other PDD/EBM models

(Fig. 6). In the accumulation zone of south Greenland, CESM overestimates snowfall rates while MPI-ESM underestimates

them in addition of overestimating runoff in this area. Finally, for all the RCMs, the snowfall accumulation does not show

similar  and  systematic  anomalies  over  a  large  extent  and  oscillates  around  the  ensemble  mean.  This  a  priori  better

representation of precipitation spatial variability in the RCMs is likely due to the fact that the precipitation is computed at

higher resolution than in the GCMs or in ERA-Interim reanalysis used to force the PDD/EBM models. This highlights the

advantage of simulating precipitation at high spatial resolution in order to represent the interaction between the atmospheric

flow and ice-sheet topography. The south-east coast of Greenland shows the largest discrepancy between models, reaching 2

mWE/yr locally, and is where most RCMs simulate higher precipitation than other types of models. Unfortunately, the data

coverage along the south-eastern coast is very sparse, making it hard to prove whether high accumulation rates in RCMs,

locally exceeding 3 mWE/yr, are actually realistic. This highlights the need for a higher density of in situ measurements in

southeast  Greenland  where  the  models  simulate  the  maximum  of  precipitation.  Shallow  ice  radar  or  remote  sensing

(elevation satellite) could also help to evaluate the accumulation rates in this area.

6. Conclusion

This paper describes the methodology and results of the SMB Model Intercomparison Project (GrSMBMIP): a novel effort

that intercompares GrIS SMB fields produced using 5 RCMs, 4 EBMs, 2 PDDs, and 2 GCMs. Model evaluation using ice

core data highlights that polar RCMs (in particular MAR and RACMO2.3) have the most accurate representation of SMB in

both the GrIS accumulation and ablation zones but they are also the only ones to have been calibrated to simulate separately

snowfall and melt which not all models do. Biases of other models are nevertheless on the same order to those of polar

RCMs (which are often used to calibrate these more simple but faster models) and the ensemble mean of the 13 inter-

compared models compares  best  with the SMB in situ observations.  The good performance of the PDD models in the

ablation zone suggests that estimating melt from temperature remains valid under current climate conditions and that the use

of more sophisticated energy balance melt scheme (like the ones used in SnowModel and NHM-SMAP) can generate larger

biases than resolving them with a priori better physics. Finally, the mean bias in the ablation zone mostly explains the large

discrepancy between models and GRACE-derived mass loss trend in 2003-2012. This suggests that  biases over current
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climate could strongly impact the models’ ability to simulate future meltwater runoff acceleration and associated sea level

rise (Fettweis et al., 2013a).

RCMs have the advantage that they resolve near-surface climate and dynamically downscale the precipitation to higher

spatial  resolution with respect  to their forcing whereas  the PDD and EBM models are fully driven by the near-surface

climate of their low resolution forcing fields. While the two GCMs used in this study are not (or not fully) forced by ERA-

Interim, they reasonably simulate the melt, that can likely be ascribed to subgrid elevation corrections applied in MPI-ESM

and CESM2. However,  for precipitation, the native GCM resolution remains too coarse to resolve the spatial variability

simulated  by RCMs.  The spatial  variability  of  precipitation  in  RCMs is  particularly  high along the  southeast  coast  of

Greenland. However,  the paucity of observations prevents us from confirming whether the local  high precipitation rates

simulated by RCMs and not captured by lower resolution models are realistic. Moreover, running RCMs at a high spatial

resolution becomes computationally expensive on time scales beyond one century suggesting that the PDD/EBM and GCM

based approaches may be more suitable for questions that require long simulations (where a coupling to an ice sheet model

may be desirable as well).

The different types of models show large discrepancies in regional mass loss trends with respect to GRACE estimates (2003-

2012) in the trend of surface mass loss between the models compared here. Comparing outputs from these same models in a

future warmer climate will enable an improved quantification of uncertainties in climate projections and therefore help refine

estimates of the GrIS contribution to future sea level rise.
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Table 1: Statistics (in mWE) of models vs SMB databases described in Section 3. 
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Snow pits (#130; 0.41±0.34mWE)
Bias RMSE Correlation Bias RMSE Correlation

BESSI (EBM) -0.07 0.11 0.87 -0.11 0.38 0.72
BOX13 (RCM) 0.10 0.19 0.87 -0.03 0.33 0.73
CESM (GCM) 0.05 0.14 0.80 -0.16 0.41 0.67
dEBM (EBM) -0.01 0.08 0.90 -0.12 0.44 0.43
HIRHAM (RCM) 0.02 0.13 0.83 -0.10 0.38 0.66
IMAU-ITM (EBM) 0.00 0.10 0.88 0.12 0.53 0.16
MAR (RCM) 0.01 0.08 0.93 -0.08 0.37 0.68
MPI-ESM (GCM) 0.01 0.12 0.76 -0.08 0.35 0.75
NHM-SMAP (RCM) 0.01 0.09 0.93 -0.10 0.30 0.81
PDD1km -0.01 0.04 0.97 -0.09 0.44 0.40
PDD5km -0.01 0.04 0.96 -0.09 0.46 0.27
RACMO (RCM) -0.02 0.08 0.88 -0.12 0.36 0.78
SNOWMODEL (EBM) -0.05 0.12 0.87 -0.17 0.47 0.33
ENSEMBLE 0.00 0.06 0.95 -0.09 0.39 0.60

BESSI (EBM) 0.38 0.87 0.79 0.45 0.89 0.81
BOX13 (RCM) 0.24 0.86 0.77 0.23 0.86 0.78
CESM (GCM) 0.11 0.66 0.86 0.11 0.61 0.89
dEBM (EBM) -0.06 0.64 0.87 -0.03 0.66 0.87
HIRHAM (RCM) 0.13 0.58 0.90 0.09 0.57 0.91
IMAU-ITM (EBM) -0.02 0.60 0.88 0.03 0.58 0.89
MAR (RCM) 0.10 0.49 0.93 0.10 0.48 0.93
MPI-ESM (GCM) -0.06 0.76 0.81 -0.05 0.69 0.85
NHM-SMAP (RCM) 0.40 0.77 0.89 0.39 0.78 0.88
PDD1km -0.18 0.69 0.89
PDD5km -0.17 0.72 0.86
RACMO (RCM) -0.07 0.62 0.89 -0.05 0.63 0.90
SNOWMODEL (EBM) -0.30 0.67 0.89 -0.32 0.61 0.92
ENSEMBLE 0.05 0.46 0.94

ice cores (# 260; 0.33±0.08mWE)

PROMICE - GrIS + ice caps 
(#1683; -0.84±0.61mWE)

PROMICE – main ice sheet 
(#1438; -0.92±0.62mWE)
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Table 2: Statistics of models (in which the signal coming from the ice discharge has been subtracted from SMB) vs GRACE for
each basin and the whole ice sheet.  The trend (in Gt/month) shows the linear trend that must be applied to match GRACE
estimates. RMSE (root-mean-square error) and correlation are computed after having applied this trend to the modelled time
series.
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Basin 1 Basin 2 Basin 3 Basin 4
RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend

BESSI 10.4 0.95 3.1 18.9 0.87 -4.9 20.4 0.97 -35.4 32.6 0.98 -62.8
BOX13 10.7 0.94 7.4 18.9 0.87 13 22.1 0.96 -35.8 32.1 0.98 -88.6
CESM 13.7 0.91 -5.4 23.6 0.79 -31.2 44 0.87 -38.8 41.2 0.97 -57.7
dEBM 10.7 0.94 13.1 17.5 0.88 10.8 18.5 0.97 -31.1 33.9 0.98 -36.1
HIRHAM 8.8 0.96 -7.4 17.7 0.89 4 15.6 0.98 -24.4 24.5 0.98 -48.9
IMAU-ITM 18.2 0.86 39.1 21.6 0.86 38.1 14.8 0.98 -29.6 28.8 0.98 -19.9
MAR 9.3 0.96 12.3 16.5 0.9 4.7 16.4 0.98 -40.1 26 0.98 -39.3
MPI-ESM 15.9 0.88 -9.2 30.7 0.64 -21 27 0.95 -16.3 56.4 0.94 4.5
NHM-SMAP 9.5 0.95 6 18.5 0.87 3.6 15.8 0.98 -19.1 25.5 0.98 -75.3
PDD1km 11.9 0.93 -5.8 17.6 0.88 -14.6 19.1 0.97 -12.7 30.5 0.98 0
PDD5km 11.8 0.93 8.5 15.2 0.91 2.3 19.6 0.97 -14.2 30.4 0.98 -5.3
RACMO 9.8 0.95 12 17.3 0.89 12.8 16.3 0.98 -18.2 26.3 0.98 -38.9
SNOWMODEL 18.7 0.86 66 27.2 0.81 89.7 13.8 0.98 -8.4 23.8 0.99 -17.8
ENSEMBLE 10.5 0.95 10.5 16.7 0.89 12.3 16.8 0.98 -23.5 27.7 0.98 -40.3

Basin 5 Basin 6 Ice sheet
RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend

BESSI 45.2 0.94 -41.4 17 0.99 16.2 95.5 0.98 -113.7
BOX13 39.4 0.96 2.7 15 0.99 -14.5 84 0.99 -103.1
CESM 51.4 0.93 -41.4 21.5 0.98 -8.9 95.7 0.98 -165.9
dEBM 43.5 0.95 0.1 19.1 0.99 20.6 94.5 0.98 -9.9
HIRHAM 26 0.98 -1.1 14.5 0.99 -21.5 54.2 0.99 -87.3
IMAU-ITM 43.7 0.95 2.7 26.5 0.98 30.7 101.2 0.98 71.6
MAR 26.8 0.98 6.7 14.2 0.99 -1 51.7 0.99 -42.4
MPI-ESM 90.3 0.8 31 39.9 0.96 -29.8 193.6 0.94 -28.3
NHM-SMAP 32.7 0.97 -52.6 17 0.99 -29.7 71.3 0.99 -153.4
PDD1km 42.7 0.95 -19.9 18.7 0.99 11.4 93.5 0.98 -28
PDD5km 40.6 0.95 -6.4 19.6 0.99 27.7 83.5 0.99 26.1
RACMO 26.9 0.98 -4.5 14.6 0.99 -9.4 56.7 0.99 -34.3
SNOWMODEL 43.3 0.95 85.8 23.7 0.98 79.2 93.3 0.98 304.2
ENSEMBLE 35.1 0.96 -3.6 16.2 0.99 9.6 73.2 0.99 -22.3
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Table 3: left) Percentage of the main ice sheet area where presence of bare ice area detected in MODIS on average over 2000-2012
and where the modelled mean SMB is significantly positive. The half of the interannual variability is used to evaluate the statistical
significance of the equilibrium line. Middle) the same for (no) presence of bare ice and where SMB is significantly negative. Right)
Percentage of agreement between modelled ablation zone and bare ice area from MODIS. 
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Agreement

BESSI 3.5 1.1 95.5
BOX13 0.9 5.0 94.0
CESM 1.9 1.6 96.4
dEBM 0.6 2.9 96.4
HIRHAM 0.6 2.4 97.0
IMAU-ITM 0.5 9.2 90.4
MAR 0.4 3.6 96.0
MPI-ESM 0.8 2.3 96.9
NHM-SMAP 0.6 3.7 95.8
PDD1km 1.4 2.3 96.3
PDD5km 1.0 5.3 93.7
RACMO 0.7 3.0 96.3
SNOWMODEL 0.3 14.1 85.6
ENSEMBLE 0.4 4.2 95.3

bare ice area 
and SMB > 

STD/2

bare ice area 
and SMB <   -

STD/2
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Table 4: Mean, interannual variability (standard deviation of the annual means) and linear trend of the main ice sheet SMB,
snowfall and runoff in (Gt/yr) over 1980-2012 simulated by the 13 models. 
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SMB Snowfall Runoff
Mean Std dev Trend Mean Std dev Trend Mean Std dev Trend

BESSI 387 80 -4.1 566 54 0.3 134 52 4.2
BOX13 426 99 -6.5 718 61 -0.3 508 118 9.1
CESM 421 87 -3.1 668 59 0.1 276 66 4.0
dEBM 359 121 -8.1 604 59 -0.1 280 108 8.6
HIRHAM 398 109 -7.3 701 63 -1.5 491 123 8.2
IMAU-ITM 281 129 -8.7 638 62 0.4 382 122 9.5
MAR 372 122 -7.8 640 55 -0.5 302 107 8.0
MPI-ESM 284 101 -3.5 558 59 0.5 336 70 4.0
NHM-SMAP 429 99 -4.3 807 81 1.3 260 79 6.1
PDD1km 332 101 -6.3 519 55 0.2 230 87 7.0
PDD5km 285 111 -6.8 534 56 0.3 278 97 7.5
RACMO 357 115 -7.2 667 59 -0.7 306 90 6.7
SNOWMODEL 96 179 -12.9 665 65 0.3 469 171 13.4
ENSEMBLE 338 111 -7.3 642 59 0.0 331 102 8.0
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Fig. 1: Left) Scatter plot of modelled vs measured SMB in mWE. To increase the visibility of this figure, a running mean on 200
samples has been applied here after having sorted the samples (observation, model) on the observations. The numbers in blue on
the X-axis indicate the number of observations with SMB values within each interval of the X-axis. Right) Locations of the in-situ
measurements: ice cores in blue, snow pits in green and PROMICE in red.
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Fig. 2: Mean SMB (in mmWE/yr) over 1980-2012 simulated by the 13 models as well as the ensemble model mean and the spread
around this mean. The SMB measurements (ice cores + PROMICE) used to evaluate the models are represented as white circles. The
areas listed in Table 3 where SMB disagree with the satellite derived bare ice area are shown in hatch. Finally, it is important to note
that for better visibility, the scale is not linear by using a step of 100 for absolute values lower than 500 mmWE/yr and a step of 500
above. 
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Fig. 3: Time series of the mass balance (MB) changes from GRACE over 2003-2013 as well as from the 13 models in which the
signal from ice discharge (King et al., 2018) has been subtracted from the modelled SMB. Times series are shown for 6 basins as
well as over the whole ice sheet. Except for both PDD models, the ice caps from the common ice sheet mask are included and the
tundra areas are discarded. Finally, the legend is sorted in order of the mass balance changes estimated over the whole ice sheet.
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Fig. 4: Same as Fig 2 but for the modelled SMB vs the ensemble model mean over 1980-2012 (shown in the 2 last plots). As Fig. 2,
the areas listed in Table 3 where SMB disagrees with the MODIS-derived bare ice area are shown in hatch.
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Fig. 5: Same as Fig 4 but for the modelled runoff. The ensemble mean and models spread around the mean are also shown in
mmWE/yr in the two last plots. Finally it is important to note that only the area where the runoff of the ensemble mean is higher
than 100mmWE/yr is shown here.
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Fig. 6: Same as Fig 4 but for the modelled snowfall (linearly interpolated on the 1 km common grid but without any elevation
correction) vs the ensemble model mean over 1980-2012 as a percentage of the ensemble model mean of snowfall accumulation.
The ensemble mean and models spread around the mean are also shown in mmWE/yr in the two last plots. 
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